Effects of Contaminated Soil on the Survival and Growth Performance of European (Populus tremula L.) and Hybrid Aspen (Populus tremula L. × Populus tremuloides Michx.) Clones Based on Stand Density

Author:

Salam Mir Md Abdus,Ruhui Wen,Sinkkonen Aki,Pappinen Ari,Pulkkinen Pertti

Abstract

This study was conducted to assess the survival rates, growth, and chlorophyll fluorescence (Fv/Fm) of four hybrid aspen (14, 191, 27, 291) and two European aspen (R3 and R4) clones cultivated in creosote- and diesel oil-contaminated soil treatments under three different plant densities: one plant per pot (low density), two plants per pot (medium density), and six plants per pot (high density) over a period of two years and three months. Evaluating the survival, growth, and Fv/Fm values of different plants is a prerequisite for phytoremediation to remediate polluted soils for ecological restoration and soil health. The results revealed that contaminated soils affected all plants’ survival rates and growth. However, plants grown in the creosote-contaminated soil displayed a 99% survival rate, whereas plants cultivated in the diesel-contaminated soil showed a 22–59% survival rate. Low plant density resulted in a higher survival rate and growth than in the other two density treatments. In contrast, the medium- and high-density treatments did not affect the plant survival rate and growth to a greater extent, particularly in contaminated soil treatments. The effects of clonal variation on the survival rate, growth, and Fv/Fm values were evident in all treatments. The results suggested that hybrid aspen clones 14 and 291, and European aspen clone R3 were suitable candidates for the phytoremediation experiment, as they demonstrated reasonable survival rates, growth, and Fv/Fm values across all treatments. A superior survival rate for clone 291, height and diameter growth, and stem dry biomass production for clone 14 were observed in all soil treatments. Overall, a reasonable survival rate (~75%) and Fv/Fm value (>0.75) for all plants in all treatments, indicating European aspen and hybrid aspen have considerable potential for phytoremediation experiments. As the experiment was set up for a limited period, this study deserves further research to verify the growth potential of different hybrid aspen and European aspen clones in different soil and density treatment for the effective phytoremediation process to remediate the contaminated soil.

Funder

Olvi-saätiö

koneen säätiö

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference79 articles.

1. Comparison of Trees and Grasses for Rhizoremediation of Petroleum Hydrocarbons

2. Biological degradation of motor oil in water;Plohl;Acta Chim. Slov.,2002

3. Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data

4. Progress in the Management of Contaminated Soils in Europe. Joint Research Center. Institute for Environment and Sustainability http://eusoils.;jrc.;ec.;europa.;eu/ESDB_Archive/eusoils_docs/other/EUR26376EN.;pdf

5. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3