Chemical and Molecular Characterization of Wound-Induced Suberization in Poplar (Populus alba × P. tremula) Stem Bark

Author:

Rains Meghan K.,Caron Christine,Regan Sharon,Molina IsabelORCID

Abstract

Upon mechanical damage, plants produce wound responses to protect internal tissues from infections and desiccation. Suberin, a heteropolymer found on the inner face of primary cell walls, is deposited in specific tissues under normal development, enhanced under abiotic stress conditions and synthesized by any tissue upon mechanical damage. Wound-healing suberization of tree bark has been investigated at the anatomical level but very little is known about the molecular mechanisms underlying this important stress response. Here, we investigated a time course of wound-induced suberization in poplar bark. Microscopic changes showed that polyphenolics accumulate 3 days post wounding, with aliphatic suberin deposition observed 5 days post wounding. A wound periderm was formed 9 days post wounding. Chemical analyses of the suberin polyester accumulated during the wound-healing response indicated that suberin monomers increased from 0.25 to 7.98 mg/g DW for days 0 to 28, respectively. Monomer proportions varied across the wound-healing process, with an overall ratio of 2:1 (monomers:glycerol) found across the first 14 days post wounding, with this ratio increasing to 7:2 by day 28. The expression of selected candidate genes of poplar suberin metabolism was investigated using qRT-PCR. Genes queried belonging to lipid polyester and phenylpropanoid metabolism appeared to have redundant functions in native and wound-induced suberization. Our data show that, anatomically, the wounding response in poplar bark is similar to that described in periderms of other species. It also provides novel insight into this process at the chemical and molecular levels, which have not been previously studied in trees.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3