Classification and Prediction by Pigment Content in Lettuce (Lactuca sativa L.) Varieties Using Machine Learning and ATR-FTIR Spectroscopy

Author:

Falcioni RenanORCID,Moriwaki Thaise,Gibin Mariana SversutORCID,Vollmann Alessandra,Pattaro Mariana Carmona,Giacomelli Marina Ellen,Sato Francielle,Nanni Marcos RafaelORCID,Antunes Werner CamargosORCID

Abstract

Green or purple lettuce varieties produce many secondary metabolites, such as chlorophylls, carotenoids, anthocyanins, flavonoids, and phenolic compounds, which is an emergent search in the field of biomolecule research. The main objective of this study was to use multivariate and machine learning algorithms on Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)-based spectra to classify, predict, and categorize chemometric attributes. The cluster heatmap showed the highest efficiency in grouping similar lettuce varieties based on pigment profiles. The relationship among pigments was more significant than the absolute contents. Other results allow classification based on ATR-FTIR fingerprints of inflections associated with structural and chemical components present in lettuce, obtaining high accuracy and precision (>97%) by using principal component analysis and discriminant analysis (PCA-LDA)-associated linear LDA and SVM machine learning algorithms. In addition, PLSR models were capable of predicting Chla, Chlb, Chla+b, Car, AnC, Flv, and Phe contents, with R2P and RPDP values considered very good (0.81–0.88) for Car, Anc, and Flv and excellent (0.91–0.93) for Phe. According to the RPDP metric, the models were considered excellent (>2.10) for all variables estimated. Thus, this research shows the potential of machine learning solutions for ATR-FTIR spectroscopy analysis to classify, estimate, and characterize the biomolecules associated with secondary metabolites in lettuce.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference89 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3