An Efficient Modular Gateway Recombinase-Based Gene Stacking System for Generating Multi-Trait Transgenic Plants

Author:

Qin Guannan,Wu Suting,Zhang Liying,Li Yanyao,Liu ChunmeiORCID,Yu Jianghui,Deng Lihua,Xiao Guoying,Zhang ZhiguoORCID

Abstract

Transgenic technology can transfer favorable traits regardless of reproductive isolation and is an important method in plant synthetic biology and genetic improvement. Complex metabolic pathway modification and pyramiding breeding strategies often require the introduction of multiple genes at once, but the current vector assembly systems for constructing multigene expression cassettes are not completely satisfactory. In this study, a new in vitro gene stacking system, GuanNan Stacking (GNS), was developed. Through the introduction of Type IIS restriction enzyme-mediated Golden Gate cloning, GNS allows the modular, standardized assembly of target gene expression cassettes. Because of the introduction of Gateway recombination, GNS facilitates the cloning of superlarge transgene expression cassettes, allows multiple expression cassettes to be efficiently assembled in a binary vector simultaneously, and is compatible with the Cre enzyme-mediated marker deletion mechanism. The linked dual positive-negative marker selection strategy ensures the efficient acquisition of target recombinant plasmids without prokaryotic selection markers in the T-DNA region. The host-independent negative selection marker combined with the TAC backbone ensures the cloning and transfer of large T-DNAs (>100 kb). Using the GNS system, we constructed a binary vector containing five foreign gene expression cassettes and obtained transgenic rice carrying the target traits, proving that the method developed in this research is a powerful tool for plant metabolic engineering and compound trait transgenic breeding.

Funder

National Key Research and Development Program of China

Agricultural Science and Technology Innovation Program

JIEBANGGUASHUAI program of Hainan Yazhou Bay Seed Laboratory

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3