Transcriptome Analysis Reveals the Stress Tolerance to and Accumulation Mechanisms of Cadmium in Paspalum vaginatum Swartz

Author:

Xu Lei,Zheng Yuying,Yu Qing,Liu Jun,Yang Zhimin,Chen Yu

Abstract

Cadmium (Cd) is a non-essential heavy metal and high concentrations in plants causes toxicity of their edible parts and acts as a carcinogen to humans and animals. Paspalum vaginatum is widely cultivating as turfgrass due to its higher abiotic stress tolerance ability. However, there is no clear evidence to elucidate the mechanism for heavy metal tolerance, including Cd. In this study, an RNA sequencing technique was employed to investigate the key genes associated with Cd stress tolerance and accumulation in P. vaginatum. The results revealed that antioxidant enzyme activities catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and glutathione S-transferase GST) were significantly higher at 24 h than in other treatments. A total of 6820 (4457/2363, up-/down-regulated), 14,038 (9894/4144, up-/down-regulated) and 17,327 (7956/9371, up-/down-regulated) differentially expressed genes (DEGs) between the Cd1 vs. Cd0, Cd4 vs. Cd0, and Cd24 vs. Cd0, respectively, were identified. The GO analysis and the KEGG pathway enrichment analysis showed that DEGs participated in many significant pathways in response to Cd stress. The response to abiotic stimulus, the metal transport mechanism, glutathione metabolism, and the consistency of transcription factor activity were among the most enriched pathways. The validation of gene expression by qRT-PCR results showed that heavy metal transporters and signaling response genes were significantly enriched with increasing sampling intervals, presenting consistency to the transcriptome data. Furthermore, over-expression of PvSnRK2.7 can positively regulate Cd-tolerance in Arabidopsis. In conclusion, our results provided a novel molecular mechanism of the Cd stress tolerance of P. vaginatum and will lay the foundation for target breeding of Cd tolerance in turfgrass.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3