Early Bolting, Yield, and Quality of Angelica sinensis (Oliv.) Diels Responses to Intercropping Patterns

Author:

Yang Lucun,Li Jingjing,Xiao Yuanming,Zhou GuoyingORCID

Abstract

Intercropping is a sustainable method for cultivating medicinal herbs since it requires lower dependence on chemical fertilizers than a sole cropping system. In this study, we compared the effects of sole cropping and intercropping on early bolting, yield, and the chemical composition of Angelica sinensis (Oliv.) Diels. Field experiments were conducted, in 2018 and in 2019, using different cropping systems including sole cropping of A. sinensis (AS), sole cropping of Vicia faba (VF), and intercropping (without fertilization) at three ratios: one row of A. sinensis + three rows of V. faba, AS/VF (1:3), two rows of A. sinensis + two rows V. faba, AS/VF (2:2), three rows of A. sinensis + one row V. faba, AS/VF (3:1). The effect of each cropping system was evaluated by measuring the dry biomass of V. faba and the dry biomass, ferulic acid content, and essential oil content and composition of A. sinensis. The early bolting rate of A. sinensis was significantly lower in the intercropping system as compared with that in a sole cropping system. The AS/VF (3:1) intercropping pattern resulted in an optimal yield and the highest ferulic acid content of A. sinensis, highest dry biomass of V. faba, and highest land equivalent ratio (LER). Additionally, the A. sinensis was more aggressive (the aggressivity value of A. sinensis was positive, and its competitive ratio was >1) under AS/VF (3:1) intercropping pattern, and it dominated over V. faba (which had negative aggressivity values and a competitive ratio of <1) under AS/VF (3:1) intercropping pattern. Ligustilide was the most dominant component of the essential oil of A. sinensis, regardless of the cropping system; however, the chemical component of essential oil was not influenced by intercropping patterns. Overall, the AS/VF (3:1) intercropping pattern without fertilization was the most productive, with the highest LER and ferulic acid content. These data indicate that intercropping can serve as an alternative for reducing the use of chemical fertilizers and intercropping also decreases the early bolting rate of A. sinensis, thus, enabling its sustainable production.

Funder

the Second Tibetan Plateau Scientific Expedition and Research Program

Key deployment project of Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3