Changes in Diversity and Community Composition of Root Endophytic Fungi Associated with Aristolochia chilensis along an Aridity Gradient in the Atacama Desert

Author:

Guevara-Araya María José,Escobedo Víctor M.,Palma-Onetto ValeriaORCID,González-Teuber Marcia

Abstract

Despite the widespread occurrence of fungal endophytes (FE) in plants inhabiting arid ecosystems, the environmental and soil factors that modulate changes in FE diversity and community composition along an aridity gradient have been little explored. We studied three locations along the coast of the Atacama Desert in Chile, in which the plant Aristolochia chilensis naturally grows, and that differ in their aridity gradient from hyper-arid to semi-arid. We evaluated if root-associated FE diversity (frequency, richness and diversity indexes) and community composition vary as a function of aridity. Additionally, we assessed whether edaphic factors co-varying with aridity (soil water potential, soil moisture, pH and nutrients) may structure FE communities. We expected that FE diversity would gradually increase towards the aridity gradient declines, and that those locations that had the most contrasting environments would show more dissimilar FE communities. We found that richness indexes were inversely related to aridity, although this pattern was only partially observed for FE frequency and diversity. FE community composition was dissimilar among contrasting locations, and soil water availability significantly influenced FE community composition across the gradient. The results indicate that FE diversity and community composition associated with A. chilensis relate to differences in the aridity level across the gradient. Overall, our findings reveal the importance of climate-related factors in shaping changes in diversity, structure and distribution of FE in desert ecosystems.

Funder

ANID-MAX PLANCK SOCIETY

FONDECYT

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3