Integrated Multitrophic Aquaculture; Analysing Contributions of Different Biological Compartments to Nutrient Removal in a Duckweed-Based Water Remediation System

Author:

Paolacci SimonaORCID,Stejskal VlastimilORCID,Toner Damien,Jansen Marcel A. K.ORCID

Abstract

Duckweed (Lemnaceae) can support the development of freshwater aquaculture if used as extractive species in Integrated MultiTrophic Aquaculture (IMTA) systems. These aquatic plants have the advantage of producing protein-rich biomass that has several potential uses. On the contrary, other biological compartments, such as microalgae and bacteria, present in the water and competing with duckweed for light and nutrients cannot be harvested easily from the water. Moreover, as phytoplankton cannot easily be harvested, nutrients are eventually re-released; hence, this compartment does not contribute to the overall water remediation process. In the present study, a mesocosm experiment was designed to quantify the portion of nutrients effectively removed by duckweed in a duckweed-based aquaculture wastewater remediation system. Three tanks were buried next to a pilot-scale IMTA system used for the production of rainbow trout and perch. The tanks received aquaculture effluents from the adjacent system, and 50% of their surface was covered by duckweed. Daily water analyses of samples at the inlet and outlet of the mesocosm allowed quantification of the amount of nutrients removed in total. The portion removed by duckweed was determined by examining the nutrient content in the initial and final biomass. The portion of nutrients removed by other compartments was similarly estimated. The results show that duckweed is responsible for the removal of 31% and 29% of N and P, respectively. Phytoplankton removed 33% and 38% of N and P, respectively, while the biofilm played no major role in nutrient removal. The remainder of the removed nutrients were probably assimilated by bacteria or sedimented. It is speculated that a higher initial duckweed density can limit phytoplankton growth and, therefore, increase the portion of nutrients removed by the duckweed compartment.

Funder

Bord Iascaigh Mhara through the Knowledge Gateway Scheme

project “CENAKVA”

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference44 articles.

1. Plant-Based Proteins: The Good, Bad, and Ugly;Annu. Rev. Food Sci. Technol.,2022

2. Interventions for improving the productivity and environmental performance of global aquaculture for future food security;One Earth,2021

3. Eco-efficiency of freshwater aquaculture in China: An assessment considering the undesirable output of pollutant emissions;Environ. Dev. Sustain.,2022

4. FAO (2018). The State of Fisheries and Aquaculture in the World 2018, FAO.

5. Aquaculture Production is a Large, Spatially Concentrated Source of Nutrients in Chinese Freshwater and Coastal Seas;Environ. Sci. Technol.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3