The Balance between Different ROS on Tobacco Stigma during Flowering and Its Role in Pollen Germination

Author:

Breygina MariaORCID,Schekaleva OlgaORCID,Klimenko Ekaterina,Luneva Oksana

Abstract

The concept of ROS as an important factor controlling pollen germination and tube growth has become generally accepted in the last decade. However, the relationship between various ROS and their significance for the success of in vivo germination and fertilization remained unexplored. For the present study, we collected Nicotiana tabacum stigma exudate on different stages of stigma maturity before and after pollination. Electron paramagnetic resonance (EPR) and colorimetric analysis were used to assess levels of O•2− and H2O2 on stigma. Superoxide dismutase activity in the stigma tissues at each stage was evaluated zymographically. As the pistil matured, the level of both ROS decreased markedly, while the activity of SOD increased, and, starting from the second stage, the enzyme was represented by two isozymes: Fe SOD and Cu/Zn SOD, which was demonstrated by the in-gel inhibitory analysis. Selective suppression of Cu/Zn SOD activity shifted the ROS balance, which was confirmed by EPR. This shift markedly reduced the rate of pollen germination in vivo and the fertilization efficiency, which was estimated by the seed set. This result showed that hydrogen peroxide is a necessary component of stigma exudate, accelerates germination and ensures successful reproduction. A decrease in O•2− production due to NADPH oxidase inhibition, although it slowed down germination, did not lead to a noticeable decrease in the seed set. Thus, the role of the superoxide radical can be characterized as less important.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3