Design of Experiments-Based Optimization of Flavonoids Extraction from Daphne genkwa Flower Buds and Flavonoids Contents at Different Blooming Stages

Author:

Kim Min-Kyoung,Park GeonhaORCID,Ji Yura,Lee Yun-Gyo,Choi Minsik,Go Seung-Hyeon,Son Miwon,Jang Young-PyoORCID

Abstract

The flower buds of Daphne genkwa have been reported as a potent resource associated with anti-angiogenic, anti-tumor, anti-rheumatoid arthritis activities, as well as immunoregulation. This paper aimed to establish an optimal extraction method for flavonoids, as active phytochemicals, and to conduct a comparative analysis by profiling the different blooming stages. Optimized shaking extraction conditions from the design of experiments (DoE), such as minutely mixture design, 23 full factorial design, and polynomial regression analysis, involved an agitation speed of 150 rpm and temperature of 65 °C for 12 h in 56% (v/v) acetone solvent. After, a comparative analysis was performed on three blooming stages, juvenile bud, mature purple bud, and complete flowering, by ultra-high-performance liquid chromatography-photodiode array-mass spectrometry (UHPLC-PDA-MS). Most flavonoids increased during bud growth and then decreased when the bud opened for blooming. In particular, apigenin 7-O-glucuronide, genkwanin 5-O-primeveroside, and genkwanin strikingly showcased this pattern. Furthermore, the raw spectrometric dataset was subjected to orthogonal projection to latent structures discriminant analysis (OPLS-DA) to find significant differences in the flavonoids from the juvenile bud, mature purple bud, and complete flowering. In conclusion, the present study facilitates an understanding of flavonoid change at different blooming stages and provides a momentous reference in the research of D. genkwa.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3