Post-Proline Cleaving Enzymes (PPCEs): Classification, Structure, Molecular Properties, and Applications

Author:

Baharin Anis,Ting Tiew-YikORCID,Goh Hoe-HanORCID

Abstract

Proteases or peptidases are hydrolases that catalyze the breakdown of polypeptide chains into smaller peptide subunits. Proteases exist in all life forms, including archaea, bacteria, protozoa, insects, animals, and plants due to their vital functions in cellular processing and regulation. There are several classes of proteases in the MEROPS database based on their catalytic mechanisms. This review focuses on post-proline cleaving enzymes (PPCEs) from different peptidase families, as well as prolyl endoprotease/oligopeptidase (PEP/POP) from the serine peptidase family. To date, most PPCEs studied are of microbial and animal origins. Recently, there have been reports of plant PPCEs. The most common PEP/POP are members of the S9 family that comprise two conserved domains. The substrate-limiting β-propeller domain prevents unwanted digestion, while the α/β hydrolase catalyzes the reaction at the carboxyl-terminal of proline residues. PPCEs display preferences towards the Pro-X bonds for hydrolysis. This level of selectivity is substantial and has benefited the brewing industry, therapeutics for celiac disease by targeting proline-rich substrates, drug targets for human diseases, and proteomics analysis. Protein engineering via mutagenesis has been performed to improve heat resistance, pepsin-resistant capability, specificity, and protein turnover of PPCEs for pharmacological applications. This review aims to synthesize recent structure–function studies of PPCEs from different families of peptidases to provide insights into the molecular mechanism of prolyl cleaving activity. Despite the non-exhaustive list of PPCEs, this is the first comprehensive review to cover the biochemical properties, biological functions, and biotechnological applications of PPCEs from the diverse taxa.

Funder

Malaysian Ministry of Higher Education

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3