Abstract
Powdery mildew fungi produce progeny conidia on conidiophores, and promote the spread of powdery mildew diseases by dispersal of the conidia from conidiophores in the natural environment. To gain insights and devise strategies for preventing the spread of powdery mildew infection, it is important to clarify the ecological mechanism of conidial dispersal from conidiophores. In this study, all of the progeny conidia released from single colonies of strawberry powdery mildew fungus (Podosphaera aphanis (Wallroth) U. Braun and S. Takamatsu var. aphanis KSP-7N) on true leaves of living strawberry plants (Fragaria × ananassa Duchesne ex Rozier cv. Sagahonoka) were consecutively collected over the lifetime of the colony with an electrostatic rotational spore collector (insulator drum) under greenhouse conditions, and counted under a high-fidelity digital microscope. The insulator drum consisted of a round plastic container, copper film, thin and transparent collector film, electrostatic voltage generator, and timer mechanism. When negative charge was supplied from the voltage generator to the copper film, the collector film created an attractive force to trap conidia. The electrostatically activated collector film successfully attracted progeny conidia released from the colony. Experiment was carried out at just one colony on one leaf for each month (in February, May, July, October, November, and December in 2021), respectively. Each collector film was exchanged for a new collector film at 24 h intervals until KSP-7N ceased to release progeny conidia from single colonies. Collection experiments were carried out to estimate the total number of conidia released from a single KSP-7N colony over a 35–45-day period after inoculation. During the fungal lifetime, KSP-7N released an average of 6.7 × 104 conidia from each of the single colonies at approximately 816 h. In addition, conidial release from KSP-7N colonies was largely affected by the light intensity and day length throughout a year; the number of conidia released from single KSP-7N colonies in night-time was clearly smaller than that in daytime, and the time of conidial release from single KSP-7N colonies was shorter by approximately 2 to 4 h in autumn and winter than in spring and summer. The ecological characteristics related to conidial releases from KSP-7N colonies will be helpful information for us to successfully suppress the spread of strawberry powdery mildews onto host plants under greenhouse conditions.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference57 articles.
1. Phylogeny of Erysiphe, Microsphaera, Uncinula (Erysipheae) and Cystotheca, Podosphaera, Sphaerotheca (Cystotheceae) inferred from rDNA ITS sequences–some taxonomic consequences;Braun;Schlechtendalia,2000
2. Braun, U., and Cook, R.T.A. (2012). Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS-KNAW Fungal Biodiversity Centre.
3. Studies on strawberry mildew, caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski. I. Biology of the fungus;Peries;Ann. Appl. Biol.,1962
4. Studies on strawberry mildew, caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski. II. Host-parasite relationships on the foliage of strawberry varieties;Peries;Ann. Appl. Biol.,1962
5. Studies on powdery mildew of strawberry caused by Sphaerotheca macularis;Jhooty;Phytopathology,1965
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献