Author:
Jiang Wei,Jin Rong,Wang Danfeng,Yang Yufeng,Zhao Peng,Liu Ming,Zhang Aijun,Tang Zhonghou
Abstract
The high-affinity potassium transporters (HKT) mediate K+-Na+ homeostasis in plants. However, the function of enhancing low-potassium tolerance in sweet potato [Ipomoea batatas (L.) Lam.] remains unrevealed. In this study, a novel HKT transporter homolog IbHKT-like gene was cloned from sweet potato, which was significantly induced by potassium deficiency stress. IbHKT-like overexpressing transgenic roots were obtained from a sweet potato cultivar Xuzishu8 using an Agrobacterium rhizogenes-mediated root transgenic system in vivo. Compared with the CK, whose root cells did not overexpress the IbHKT-like gene, overexpression of the IbHKT-like gene protected cell ultrastructure from damage, and transgenic root meristem cells had intact mitochondria, endoplasmic reticulum, and Golgi dictyosomes. The steady-state K+ influx increased by 2.2 times in transgenic root meristem cells. Overexpression of the IbHKT-like gene also improved potassium content in the whole plant, which increased by 63.8% compared with the CK plants. These results could imply that the IbHKT-like gene, as a high-affinity potassium transporter gene, may play an important role in potassium deficiency stress responses.
Funder
National Natural Science Foundation of China
China Agriculture Research System
National Key R&D Program of China
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献