Author:
Wang Jingjing,Shen Jie,Shi Wei,Qiao Gang,Wu Shaoen,Wang Xinjie
Abstract
A hybrid optical-acoustic underwater wireless sensor network (OA-UWSN) was proposed to solve the problem of high-speed transmission of real-time video and images in marine information detection. This paper proposes a novel energy-efficient contention-based media access control (MAC) protocol (OA-CMAC) for the OA-UWSN. Based on optical-acoustic fusion technology, our proposed OA-CMAC combines the postponed access mechanism in carrier sense multiple access with collision avoidance (CSMA/CA) and multiplexing-based spatial division multiple access (SDMA) technology to achieve high-speed and real-time data transmission. The protocol first performs an acoustic handshake to obtain the location information of a transceiver node, ensuring that the channel is idle. Otherwise, it performs postponed access and waits for the next time slot to contend for the channel again. Then, an optical handshake is performed to detect whether the channel condition satisfies the optical transmission, and beam alignment is performed at the same time. Finally, the nodes transmit data using optical communication. If the channel conditions do not meet the requirements for optical communication, a small amount of data with high priority is transmitted through acoustic communication. An evaluation of the proposed MAC protocol was performed with OMNeT++ simulations. The results showed that when the optical handshaking success ratio was greater than 50%, compared to the O-A handshake protocol in the literature, our protocol could result in doubled throughput. Due to the low energy consumption of optical communication, the node’s lifetime is 30% longer than that of pure acoustic communication, greatly reducing the network operation cost. Therefore, it is suitable for large-scale underwater sensor networks with high loads.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Shandong Province
China Postdoctoral Science Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献