Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Ilex rotunda Thunb.

Author:

Wang Yuanjian12ORCID,Cui Gang2,He Kaifeng2,Xu Kewang1ORCID,Liu Wei3ORCID,Wang Yuxiao1,Wang Zefu4,Liu Shasha5,Bi Changwei12ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing 210037, China

2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

3. College of Optical, Mechanical and Electrical Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China

4. Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China

5. School of Intelligent Manufacturing, Nanjing Polytechnic Institute, Nanjing 210044, China

Abstract

Ilex rotunda Thunb. stands as a representative tree species in subtropical evergreen broad-leaved forests, widely distributed across southeast Asia. This species holds significant value in forestry due to its ecological resilience and adaptability. Although researchers have conducted in-depth research on the plastid genome (plastome) of I. rotunda, the mitochondrial genome (mitogenome) of this species has remained undocumented. In the present study, we successfully sequenced and assembled the I. rotunda mitogenome. The mitogenome has a circular structure and is 567,552 bp in total length, with a GC content of 45.47%. The composition of the mitogenome encompasses 40 protein-coding genes, along with 3 rRNA genes and 19 tRNA genes. Notably, the mitogenome exhibits a universal distribution of repetitive sequences, but the total length of repeats contributes to a relatively small proportion (4%) of the whole mitogenome, suggesting that repeats do not serve as the primary cause of the amplification of the Ilex mitogenomes. Collinear analysis indicates that the I. rotunda mitogenome is very conservative within Aquifoliales species. Additionally, our research identified 51 fragments of plastid genomic DNA, which have migrated from the plastome into the mitogenome, with five genes from the plastome remaining intact. Eventually, the phylogenetic analyses based on the plastomes and mitogenomes of 36 angiosperms determine the Aquifoliales to be the basal group in the campanulids. This study establishes the bedrock for prospective investigations in molecular breeding research.

Funder

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of the Higher Education Institutions of Jiangsu Province

Beidou Scientific Research Program of Nanjing Polytechnic Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3