Automated Shape Correction for Wood Composites in Continuous Pressing

Author:

Lv Yunlei12,Liu Yaqiu12,Li Xiang12ORCID,Lu Lina12ORCID,Malik Adil3ORCID

Affiliation:

1. College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

2. National Key Laboratory of Forestry and Grassland Artificial Intelligence and Equipment Engineering Technology, Harbin 150040, China

3. Department of Engineering Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan

Abstract

The effective and comprehensive utilization of forest resources has become the theme of the global “dual-carbon strategy”. Forestry restructured wood is a kind of wood-based panel made of wood-based fiber composite material by high-temperature and high-pressure restructuring–molding, and has become an important material in the field of construction, furniture manufacturing, as well as derivative processing for its excellent physical and mechanical properties, decorative properties, and processing performance. Taking Medium Density Fiberboard (MDF) as the recombinant material as the research object, an event-triggered synergetic control mechanism based on interventional three-way decision making is proposed for the viscoelastic multi-field coupling-distributed agile control of the “fixed thickness section” in the MDF continuous flat-pressing process, where some typical quality control problems of complex plate shape deviations including thickness, slope, depression, and bump tend to occur. Firstly, the idea of constructing the industrial event information of continuous hot pressing based on information granulation is proposed, and the information granulation model of the viscoelastic plate shape process mechanism is established by combining the multi-field coupling effect. Secondly, an FMEA-based cyber granular method for diagnosing and controlling the plate thickness diagnosis and control failure information expression of continuous flat pressing is proposed for the problems of plate thickness control failure and plate thickness deviation defect elimination that are prone to occur in the continuous flat-pressing process. The precise control of the plate thickness in the production process is realized based on event-triggered control to achieve the intelligent identification and processing of the various types of faults. The application test is conducted in the international mainstream production line of a certain type of continuous hot-pressing equipment for the production of 18 mm plate thickness; the synergistic effect is basically synchronized after 3 s, the control accuracy reaches 30%, and the average value of the internal bond strength is 1.40, which ensures the integrity of the slab. Practical tests show that the method in the actual production is feasible and effective, with detection and control accuracy of up to ±0.05 mm, indicating that in the production of E0- and E1-level products, the rate of superior products can reach more than 95%.

Funder

Fundamental Research Funds for the Central Universities

excellent doctoral dissertation cultivation in forestry engineering

National Natural Science Foundation

Publisher

MDPI AG

Reference34 articles.

1. Progress of research on high-performance recombinant wood and application suggestions;Chen;China For. Prod. Ind.,2023

2. Design Concept and Technical Features of Continuous Heating press Manufactured by Dieffenbacher;Huang;China Wood-Based Panels,2017

3. Industry 4.0 Calls;Chen;Int. Wood Ind.,2019

4. CPS press update;Chen;Int. Wood Ind.,2016

5. The first board Daily production of 1000 m3 MDF production line supplied by YAL Machinery for MST successfully rolled off the line;Lin;China Wood-Based Panels,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3