Application of CuxO-FeyOz Nanocatalysts in Ethynylation of Formaldehyde

Author:

Li ,Ban ,Niu ,Huang ,Meng ,Han ,Zhang ,Zhang ,Zhao

Abstract

Composite nanomaterials have been widely used in catalysis because of their attractive properties and various functions. Among them, the preparation of composite nanomaterials by redox has attracted much attention. In this work, pure Cu2O was prepared by liquid phase reduction with Cu(NO3)2 as the copper source, NaOH as a precipitator, and sodium ascorbate as the reductant. With Fe(NO3)3 as the iron source and solid-state phase reaction between Fe3+ and Cu2O, CuxO-FeyOz nanocatalysts with different Fe/Cu ratios were prepared. The effects of the Fe/Cu ratio on the structure of CuxO-FeyOz nanocatalysts were studied by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet confocal Raman (Raman), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS, XAES), and hydrogen temperature-programmed reduction (H2-TPR). Furthermore, the structure–activity relationship between the structure of CuxO-FeyOz nanocatalysts and the performance of formaldehyde ethynylation was discussed. The results show that Fe3+ deposited preferentially on the edges and corners of the Cu2O surface, and a redox reaction between Fe3+ and Cu+ occurred, forming CuxO-FeyOz nanoparticles containing Cu+, Cu2+, Fe2+, and Fe3+. With the increase of the Fe/Cu ratio, the content of CuxO-FeyOz increased. When the Fe/Cu ratio reached 0.8, a core–shell structure with Cu2O inside and a CuxO-FeyOz coating on the outside was formed. Because of the large physical surface area and the heterogeneous structure formed by CuxO-FeyOz, the formation of nonactive Cu metal is inhibited, and the most active species of Cu+ are exposed on the surface, showing the best formaldehyde ethynylation activity.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3