Effect of the Host on Deep-Blue Organic Light-Emitting Diodes Based on a TADF Emitter for Roll-Off Suppressing

Author:

Kumar ,Pereira

Abstract

To achieve significant efficiency and low roll-off in thermally activated delayed fluorescence (TADF) material organic light-emitting diodes (OLEDs), it is essential to choose a host that has suitable high triplet energy (T1) and bipolar character to boost the TADF characteristics as a dopant and avoid exciton annihilation. Herein, we present the effect of different host materials on the efficiency of organic light-emitting diodes (OLEDs) based on bis[4-(3,6 dimethoxycarbazole)phenyl]sulfone (DMOC-DPS) deep-blue emitter. The devices with 10 wt.% of an emitter in different electron types of host bis[2-(diphenylphosphino) phenyl] ether oxide (DPEPO), and hole types of host 1,3-bis(N-carbazolyl)benzene (mCP), were fabricated to study the effect on device performance. The results show that an external quantum efficiency (EQE) of 4% and maximum current efficiency (ƞc) up to 5.77 cd/A with high luminescence (lmax) 8185 cd/m2 in DPEPO was achieved, compared to 2.63% EQE, ƞc 4.12 cd/A with lmax 5338 cd/m2 in mCP in a very simple device structure. As a remarkable result, the roll-off is suppressed at 1000 cd/m2, and for maximum brightness, the roll-off is less than 50%. Further general applications are discussed.

Funder

EXCILIGHT

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference43 articles.

1. Organic Light Emitting Diodes: The Use of Rare Earth and Transition Metals;Pereira,2012

2. New Generation of High Efficient OLED Using Thermally Activated Delayed Fluorescent Materials;Kumar,2018

3. Recent Advancements in and the Future of Organic Emitters: TADF‐ and RTP‐Active Multifunctional Organic Materials

4. Approaches for fabricating high efficiency organic light emitting diodes

5. Thermally Activated Delayed Fluorescent Polymers: Structures, Properties, and Applications in OLED Devices

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3