A Novel IoT-Based Performance Testing Method and System for Fire Pumps

Author:

Zhang Shangcong12,Li Yongfang3,Chen Xuefei4,Zhou Ruyi3,Wu Ziran12ORCID,Zarhmouti Taha1

Affiliation:

1. Engineering Research Center of Low-Voltage Apparatus of Zhejiang Province, Wenzhou University, Wenzhou 325035, China

2. Technology Institute of Wenzhou University in Yueqing, Wenzhou 325099, China

3. C-lin Electrical Co., Ltd., Yueqing 325600, China

4. Shanghai TYIoT Technology Co., Ltd., Shanghai 200120, China

Abstract

Fire pumps are the key components of water supply in a firefighting system. At present, there is a lack of fire water pump testing methods that intelligently detect faulty states. Existing testing approaches require manual operation, which leads to low efficiency and accuracy. To solve the issue, this paper presents an automatic and smart testing approach that acquires measurements of the flow, pressure, shaft power and efficiency from smart sensors via an IoT network, so that performance curves are obtained in the testing processes. An IoT platform is developed for data conversion, transmission and storage. The Discrete Fréchet Distance is applied to evaluate the similarities between the acquired performance curves and metric performance curves, to determine the working condition of the fire pump. The weights of the measurement dimensions for distance computation are optimized by the Genetic Algorithm to improve the distinction between normal and faulty performance curves. Finally, the experimental results show that the proposed method can completely detect faulty states and prove its high practicality for real firefighting systems.

Funder

Yueqing Science and Technology Bureau

C-lin Electrical Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3