Grant-Free NOMA: A Low-Complexity Power Control through User Clustering

Author:

Celik Abdulkadir1ORCID

Affiliation:

1. Computer, Electrical, and Mathematical Sciences & Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

Abstract

Non-orthogonal multiple access (NOMA) has emerged as a promising solution to support multiple devices on the same network resources, improving spectral efficiency and enabling massive connectivity required by ever-increasing Internet of Things devices. However, traditional NOMA schemes operate in a grant-based fashion and require channel-state information and power control, which hinders its implementation for massive machine-type communications. Accordingly, this paper proposes synchronous grant-free NOMA (GF-NOMA) frameworks that effectively integrate user equipment (UE) clustering and low-complexity power control to facilitate the power-reception disparity required by the power-domain NOMA. Although single-level GF-NOMA (SGF-NOMA) designates an identical transmit power for all UEs, multi-level GF-NOMA (MGF-NOMA) groups UEs into partitions based on the sounding reference signals strength and assigns partitions with different identical power levels. Based on the objective of interest (e.g., max–sum or max–min rate), the proposed UE clustering scheme iteratively admits UEs to form clusters whose size is dynamically determined based on the number of UEs and available resource blocks (RBs). Once the UEs are acknowledged with power levels and allocated RBs through random-access response (RAR) messages, UEs can transmit anytime without grant acquisition. Numerical results show that the proposed GF-NOMA frameworks can compute clusters in the order of milliseconds for hundreds of UEs. The MGF-NOMA can reach up to 96–99% of the optimal benchmark max–sum rate, and the SGF-NOMA reaches 87% of the optimal benchmark max–sum rate at the same power consumption. Since the MGF-NOMA and optimal benchmark enforce the strongest and weakest channel UEs to transmit at maximum and minimum transmit powers, respectively, the SGF-NOMA also offers a significantly higher energy consumption fairness and network lifetime as all UEs consume equal transmit powers. Although the MGF-NOMA delivers an inferior max–min rate performance, the SGF-NOMA is shown to reach 3e6 MbpJ energy efficiency compared to the 1e7 MbpJ benchmark.

Funder

the Office of Sponsored Research (OSR) of King Abdullah University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. ITU-R (2015). IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, ITU-R.

2. URLLC and eMBB in 5G Industrial IoT: A Survey;Khan;IEEE Open J. Commun. Soc.,2022

3. An Optimized Privacy Information Exchange Schema for Explainable AI Empowered WiMAX-based IoT networks;Chithaluru;Future Gener. Comput. Syst.,2023

4. Supporting IoT With Rate-Splitting Multiple Access in Satellite and Aerial-Integrated Networks;Lin;IEEE Internet Things J.,2021

5. URLLC for 5G and Beyond: Requirements, Enabling Incumbent Technologies and Network Intelligence;Ali;IEEE Access,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3