Geometry and Geodesy on the Primary Visual Cortex as a Surface of Revolution

Author:

Resca Lorenzo G.ORCID,Mecholsky Nicholas A.ORCID

Abstract

Biological mapping of the visual field from the eye retina to the primary visual cortex, also known as occipital area V1, is central to vision and eye movement phenomena and research. That mapping is critically dependent on the existence of cortical magnification factors. Once unfolded, V1 has a convex three-dimensional shape, which can be mathematically modeled as a surface of revolution embedded in three-dimensional Euclidean space. Thus, we solve the problem of differential geometry and geodesy for the mapping of the visual field to V1, involving both isotropic and non-isotropic cortical magnification factors of a most general form. We provide illustrations of our technique and results that apply to V1 surfaces with curve profiles relevant to vision research in general and to visual phenomena such as ‘crowding’ effects and eye movement guidance in particular. From a mathematical perspective, we also find intriguing and unexpected differential geometry properties of V1 surfaces, discovering that geodesic orbits have alternative prograde and retrograde characteristics, depending on the interplay between local curvature and global topology.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3