Investigating the Electrical and Mechanical Properties of Polystyrene (PS)/Untreated SWCNT Nanocomposite Films

Author:

Parnian Pooyan1ORCID,D’Amore Alberto1ORCID

Affiliation:

1. Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 29, 81031 Aversa, Italy

Abstract

This paper presents a study of the electrical and mechanical properties of polystyrene (PS)/carbon nanotube (CNT) composites prepared using the doctor blade technique. The nanocomposite films of PS/CNT were prepared by casting a composite solution of PS/CNT in tetrahydrofuran (THF) on a glass substrate using a doctor blade and drying in an oven. The nanocomposite films were then characterized using a tensile test and the four-point probe method to evaluate their mechanical properties and electrical conductivity. The experimental results were used to analyze the unpredicted behavior of the nanocomposite films. The experimental results showed that the electrical conductivity of the nanocomposite films became almost insensitive or unmeasurable with increasing CNT content for very dilute PS–THF solutions. In contrast, at higher PS concentrations, film conductivity increased to a given CNT threshold and then decreased. Based on PS–THF viscosity–concentration data, a discussion is elaborated that partially justifies the experimental results.

Publisher

MDPI AG

Subject

Engineering (miscellaneous),Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3