Modeling of the Mechanical Behavior of 3D Bioplotted Scaffolds Considering the Penetration in Interlocked Strands

Author:

Naghieh Saman,Sarker M.,Karamooz-Ravari Mohammad,McInnes Adam,Chen Xiongbiao

Abstract

Three-dimensional (3D) bioplotting has been widely used to print hydrogel scaffolds for tissue engineering applications. One issue involved in 3D bioplotting is to achieve the scaffold structure with the desired mechanical properties. To overcome this issue, various numerical methods have been developed to predict the mechanical properties of scaffolds, but limited by the imperfect representation of one key feature of scaffolds fabricated by 3D bioplotting, i.e., the penetration or fusion of strands in one layer into the previous layer. This paper presents our study on the development of a novel numerical model to predict the elastic modulus (one important index of mechanical properties) of 3D bioplotted scaffolds considering the aforementioned strand penetration. For this, the finite element method was used for the model development, while medium-viscosity alginate was selected for scaffold fabrication by the 3D bioplotting technique. The elastic modulus of the bioplotted scaffolds was characterized using mechanical testing and results were compared with those predicted from the developed model, demonstrating a strong congruity between them. Once validated, the developed model was also used to investigate the effect of other geometrical features on the mechanical behavior of bioplotted scaffolds. Our results show that the penetration, pore size, and number of printed layers have significant effects on the elastic modulus of bioplotted scaffolds; and also suggest that the developed model can be used as a powerful tool to modulate the mechanical behavior of bioplotted scaffolds.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3