Author:
Lopez Aldaba Aitor,Lopez-Torres Diego,Campo-Bescós Miguel,López José,Yerro David,Elosua César,Arregui Francisco,Auguste Jean-Louis,Jamier Raphael,Roy Philippe,López-Amo Manuel
Abstract
Soil moisture content has always been an important parameter to control because it is a deterministic factor for site-specific irrigation, seeding, transplanting, and compaction detection. In this work, a discrete sensor that is based on a SnO2–FP (Fabry-Pérot) cavity is presented and characterized in real soil conditions. As far as authors know, it is the first time that a microstructured optical fiber is used for real soil moisture measurements. Its performance is compared with a commercial capacitive soil moisture sensor in two different soil scenarios for two weeks. The optical sensor shows a great agreement with capacitive sensor’s response and gravimetric measurements, as well as a fast and reversible response; moreover, the interrogation technique allows for several sensors to be potentially multiplexed, which offers the possibility of local measurements instead of volumetric: it constitutes a great tool for real soil moisture monitoring.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献