Sensitive Characterization of the Graphene Transferred onto Varied Si Wafer Surfaces via Terahertz Emission Spectroscopy and Microscopy (TES/LTEM)

Author:

Yang Dongxun1ORCID,Laarman Jesse Henri2,Tonouchi Masayoshi1ORCID

Affiliation:

1. Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan

2. Department of Applied Physics, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands

Abstract

Graphene shows great potential in developing the next generation of electronic devices. However, the real implementation of graphene-based electronic devices needs to be compatible with existing silicon-based nanofabrication processes. Characterizing the properties of the graphene/silicon interface rapidly and non-invasively is crucial for this endeavor. In this study, we employ terahertz emission spectroscopy and microscopy (TES/LTEM) to evaluate large-scale chemical vapor deposition (CVD) monolayer graphene transferred onto silicon wafers, aiming to assess the dynamic electronic properties of graphene and perform large-scale graphene mapping. By comparing THz emission properties from monolayer graphene on different types of silicon substrates, including those treated with buffered oxide etches, we discern the influence of native oxide layers and surface dipoles on graphene. Finally, the mechanism of THz emission from the graphene/silicon heterojunction is discussed, and the large-scale mapping of monolayer graphene on silicon is achieved successfully. These results demonstrate the efficacy of TES/LTEM for graphene characterization in the modern graphene-based semiconductor industry.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3