Response of Aquatic Plants to Extreme Alterations in River Morphology

Author:

Gebler DanielORCID,Szoszkiewicz KrzysztofORCID

Abstract

In this study, we aimed to identify the macrophyte pattern and diversity under exposure to substantial hydromorphological degradation in rivers, taking into account the water quality factor. The study was based on 190 small and medium lowland rivers in Poland that had experienced channel alterations. The number of taxa identified (153 species) was consistent with natural/seminatural rivers, and the average species richness for the survey site was 16. Nevertheless, nearly 25% of the survey sites were poor in species for which ten or fewer taxa were noted. The most common species were emergent Phalaris arundinacea; free-floating Lemna minor; heterophyllous Sparganium emersum; filamentous algae Cladophora sp.; and some amphibious species, including Agrostis stolonifera. The surveyed sites represented a wide diversity gradient, from sites poor in species and with low diversity based on relative abundance to highly diverse river sites in less transformed rivers. Our results revealed that macrophyte species were mostly determined by hydromorphological degradation, as well as other distinguished environmental factors, such as water trophy (e.g., Lemna gibba, Bidens tripartita, and Ceratophylum demersum) and channel dimensions (e.g., Nuphar lutea, Sagittaria sagittifolia, and Typha latiflolia).

Funder

National Science Centre

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference70 articles.

1. EEA (2012). European Waters—Assessment of Status and Pressures, European Environment Agency.

2. The European Parliament and the Council (2022, September 01). Directive 2000/60/EC of the European Parliament and of the Council Establishing a Framework for Community Action in the Field of Water Policy. Available online: http://eur-lex.europa.eu/resource.html?uri=cellar:5c835afb-2ec6-4577-bdf8-756d3d694eeb.0004.02/DOC_1&format=PDF.

3. The future of European water management: Demonstration of a new WFD compliant framework to support sustainable management under multiple stress;Sci. Total Environ.,2018

4. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive;Sci. Total Environ.,2018

5. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future;Sci. Total Environ.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3