Abstract
The release of monomers from the homotetrameric protein transthyretin (TTR) is the first event of a cascade, eventually leading to sporadic or familial TTR amyloidoses. Thus, ligands able to stabilize TTR and inhibit monomer release are subject of intense scrutiny as potential treatments against these pathologies. Here, we investigated the interaction between TTR and a non-glycated derivative of the main olive polyphenol, oleuropein (OleA), known to interfere with TTR aggregation. We coupled fluorescence studies with molecular docking to investigate the OleA/TTR interaction using wild-type TTR, a monomeric variant, and the L55P cardiotoxic mutant. We characterized a fluorescence band emitted by OleA upon formation of the OleA/TTR complex. Exploiting this signal, we found that a poorly specific non-stoichiometric interaction occurs on the surface of the protein and a more specific stabilizing interaction takes place in the ligand binding pocket of TTR, exhibiting a KD of 3.23 ± 0.32 µM, with two distinct binding sites. OleA interacts with TTR in different modes, stabilizing it and preventing its dissociation into monomers, with subsequent misfolding. This result paves the way to the possible use of OleA to prevent degenerative diseases associated with TTR misfolding.
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献