Transcriptional Profiling of Populations in the Clam Ruditapes decussatus Suggests Genetically Determined Differentiation in Gene Expression along Parallel Temperature Gradients and between Races of the Atlantic Ocean and West Mediterranean Sea

Author:

Saavedra Carlos1,Milan Massimo2ORCID,Leite Ricardo B.3ORCID,Cordero David1,Patarnello Tomaso2,Cancela M. Leonor34ORCID,Bargelloni Luca2

Affiliation:

1. Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas, 12595 Ribera de Cabanes (Castellón), Spain

2. Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’Università 16, Agripolis, 35020 Legnaro, PD, Italy

3. Centre of Marine Sciences (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal

4. Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal

Abstract

Ongoing ocean warming due to climate change poses new challenges for marine life and its exploitation. We have used transcriptomics to find genetically based responses to increased temperature in natural populations of the marine clam Ruditapes decussatus, which lives along parallel thermal gradients in southern Europe. Clams of the Atlantic and West Mediterranean races were collected in northern (cool) and a southern (warm) localities. The animals were kept in running seawater in the warm, southern Atlantic locality for a 15-week period. During this period, water temperature was raised to typical southern European summer values. After this period, an expression profile was obtained for a total of 34 clams and 11,025 probes by means of an oligonucleotide microarray. We found distinct transcriptional patterns for each population based on a total of 552 differentially expressed genes (DEGs), indicating innate differences which probably have a genetic basis. Race and latitude contributed significantly to gene expression differences, with very different sets of DEGs. A gene ontology analysis showed that races differed mainly in the genes involved in ribosomal function and protein biosynthesis, while genes related to glutathione metabolism and ATP synthesis in the mitochondria were the most outstanding with respect to north/south transcriptional differences.

Funder

Spanish Ministry of Science and Innovation

EU-funded ASSEMBLE program

Generalitat Valenciana

OMPETE Program

CCMAR

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3