miR-155 Regulates Photoperiod Induced Gonadal Development in Atlantic Salmon (Salmo salar) by Targeting Brain-Derived Neurotrophic Factor

Author:

Guo Teng12,Wang Yanfeng34,Jiang Ping5,Li Jun236,Liu Qinghua34ORCID,Chi Liang1

Affiliation:

1. College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China

2. College of Life Science, Qingdao Agricultural University, Qingdao 266109, China

3. The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

4. Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

5. Jinan Center for Animal Disease Prevention and Control, Jinan 250109, China

6. Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China

Abstract

This study was designed to explore the impact of the photoperiod on the gonadal development and somatic growth of Atlantic salmon raised in recirculating aquaculture systems (RASs), with specific focus on the role that microRNA (miR)-155 plays as a regulator in the Atlantic salmon’s photoperiodic reproduction. These salmon were reared for 5 months under six different photoperiod regimens, including two with changing photoperiods (LL–SL = 24L:0D–8L:16D and SL–LL = 8L:16D–24L:0D) and four with constant photoperiods (24L:0D, 18L:6D, 12L:12D, and 8L:16D). The longer photoperiod groups (LL–SL and 24L:0D) were ultimately associated with higher gonadosomatic index (GSI) values and an increased proportion of mature fish relative to other exposure groups, indicating that the photoperiod positively impacted the Atlantic salmon’s gonadal development in RAS environments. Hypothalamic miR-155 expression in these Atlantic salmon was also found to be influenced by the photoperiod, showing a markedly decreased expression in salmon exposed to a long photoperiod and upregulation following rearing under a short photoperiod. Functionally, miR-155 was found to suppress the expression of gonadal axis-related genes, including FSH and GnRH, through its ability to target the brain-derived neurotrophic factor (BDNF) and to thereby regulate photoperiod reproduction. Overall, these results suggested that the photoperiod could regulate gonad development in Atlantic salmon with miRNA-155 being involved in this process by targeting the BDNF.

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3