Effect of Chronic Hydrogen Peroxide Exposure on Ion Transport in Gills of Common Carp (Cyprinus carpio)

Author:

Mou Yating1,Li Bing12,Hou Yiran12ORCID,Jia Rui123ORCID,Zhu Jian12

Affiliation:

1. Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China

2. Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China

3. International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China

Abstract

High environmental hydrogen peroxide (H2O2) has been demonstrated to be toxic for fish. However, the response mechanism of fish to chronic H2O2 exposure is not yet well understood. Therefore, this study aimed to investigate the alteration in ion transport in gills and analyzed the potential response mechanism after chronic H2O2 exposure. The common carps were exposed to 0, 0.25, 0.50, and 1.00 mM of H2O2 for 14 days. The histopathological evaluation results indicated that H2O2 exposure caused incomplete gill filament structure. In the plasma, H2O2 exposure suppressed the potassium (K+) concentration but increased sodium (Na+) concentration. In the gills, the calcium (Ca2+) level was raised, but the K+ and chlorine (Cl−) levels were decreased after H2O2 exposure. After 14 days of exposure, H2O2 prompted the activities of Ca2+/Mg2+-ATPase and H+/K+-ATPase but suppressed Na+/K+-ATPase activity in the gills. Gene transcription analysis showed that the ion-regulation-related genes including nkaa and rhbg were downregulated after H2O2 exposure. In addition, H2O2 exposure upregulated the mRNA levels of cam and camk II, indicating that the Ca2+ singling pathway was activated. In conclusion, our data showed that chronic H2O2 exposure altered gill structure and disturbed ion transport, which further negatively affected the equilibrium of ions and osmotic pressure.

Funder

earmarked fund for CARS

Central Public-interest Scientific Institution Basal Research Fund

Young Science-Technology Talents Support Project of Jiangsu Association Science and Technology

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3