Parentage Analysis Reveals Unequal Family Sizes during Hatchery Production

Author:

Akers Mary1,Quinlan Henry2ORCID,Johnson Andrew1ORCID,Baker Edward3ORCID,Welsh Amy1ORCID

Affiliation:

1. Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV 26506, USA

2. Ashland Fish and Wildlife Conservation Office, U.S. Fish and Wildlife Service, Ashland, WI 54806, USA

3. Marquette Fisheries Research Station, Michigan Department of Natural Resources, Marquette, MI 49855, USA

Abstract

Lake sturgeon (Acipenser fulvescens) is a species of conservation concern that has been stocked in several Great Lakes (North America) rivers. Lake sturgeon were extirpated in the Ontonagon River in Lake Superior and stocking began in 1998. In 2017, gametes were collected from spawning lake sturgeon (9 females, 36 males) caught at the nearby Sturgeon River spawning ground, generating nine family groups using a 1:4 mating design (n = 862). In 2018, gametes were collected from 3 females and 15 males, generating three family groups, and additional collections of drifting fry from the Sturgeon River were reared in the hatchery, resulting in 84 hatchery-produced and 675 wild-caught fry for stocking in the Ontonagon River. The objective of this study was to compare paternal representation and genetic diversity between the two stocking strategies. Parentage analysis based on genetic data from 12 microsatellite loci determined none of the family groups in the hatchery had equal paternal representation (p < 0.001), while wild-produced offspring had equal paternal representation. Despite the larger number of breeders contributing to the wild-caught larvae, there was no significant difference in genetic diversity between the wild-caught larvae and representative hatchery-produced offspring.

Funder

U.S. Fish and Wildlife Service Great Lakes Restoration Initiative

USDA National Institute of Food and Agriculture, Hatch

West Virginia Agricultural and Forestry Experiment Station

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3