Study on the Microflora Structure in a Litopenaeus vannamei–Sinonovacula constricta Tandem-Culture Model Based on High-Throughput Sequencing under Different Culture Densities

Author:

Zhao Chunpu1,Xu Jilin12,Xu Shanliang12,Bao Gege1,Wang Danli12

Affiliation:

1. School of Marine Science, Ningbo University, Ningbo 315211, China

2. Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo 315211, China

Abstract

In this study, we evaluated the intestinal contents of Pacific whiteleg shrimp (Litopenaeus vannamei), the visceral mass of razor clams (Sinonovacula constricta) and the water columns and the substrate sediments in different culture-density groups in a L. vannamei–S. constricta tandem-culture model by high-throughput sequencing of the 16S rRNA gene. The results show that the culture density affected the bacterial floral structure of the water columns, substrate sediment and razor-clam gut masses without making significant differences in the bacterial flora structure of the shrimp gut; the Shannon diversity indexes of the bacterial communities in the substrate sediment, shrimp gut and razor-clam gut masses were not significantly different among the density groups, and the Shannon diversity index of the bacterial communities in the water column was higher in the group with higher culture densities; at the phylum level, the dominant bacteria common to the shrimp guts, razor-clam visceral mass, water columns and substrate sediment were Proteobacteria and Bacteroidetes; Chloroflexi was the dominant bacterium specific to the substrate sediment; and Firmicutes was the dominant bacterium specific to the shrimp gut and razor-clam gut mass. We used national standards (GB 17378.4-2007, China) to evaluate the content of water-quality factors through the environmental factors and the genus-level correlation analysis of bacterial flora that follow: the dominant bacterium in the water column, uncultured_bacterium_f_Rhodobacteraceae, was negatively correlated with PO43−-P; the dominant bacteria in the substrate sediments, uncultured_bacterium_f_Anaerolineaceae and Woeseia, were significantly and negatively correlated with DO; and the dominant bacteria Lactococcus spp. in the razor-clam gut mass and the shrimp intestines were positively correlated with DO. These results show that culture density directly affects water-quality factors, which in turn affect the culture environment and the composition structure of the bacterial flora in a cultured organism.

Funder

National Key Research and Development Program of China

Ningbo Science and Technology Research Projects, China

China Agriculture Research System of MOF and MARA

K. C. Wong Magna Fund in Ningbo University

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3