Physiological Effect of Extended Photoperiod and Green Wavelength on the Pituitary Hormone, Sex Hormone and Stress Response in Chub Mackerel, Scomber japonicus

Author:

Choi Young Jae1,Park Seul Gi Na Ra2,Jo A-Hyun2,Kim Jun-Hwan2ORCID

Affiliation:

1. Inland Fisheries Research Institute, National Institute of Fisheries Science, Geumsan 32762, Republic of Korea

2. Department of Aquatic Life and Medical Science, Sun Moon University, Asan 336-708, Republic of Korea

Abstract

Chub mackerel, Scomber japonicus, is heavily farmed and harvested due to its demand as a high-quality protein source rich in fatty acids. However, the effects of environmental cues on sexual maturation of the fish remain understudied. We aim to elucidate the effect of light manipulation on the hormones related to reproduction and on the stress response in the species. Mackerel were exposed to different photoperiods (12 h light:12 h dark or 14 h light:10 h dark) and light wavelengths (provided by white fluorescent bulbs or green LEDs). Total RNA extracted from the brain was assayed with quantitative polymerase chain reaction (a powerful technique for advancing functional genomics) and blood plasma was analyzed via immunoassay using ELISA kits. The mRNA expression of gene-encoding gonadotropin-releasing hormone, gonadotropin hormone, follicle-stimulating hormone, and luteinizing hormone were significantly increased through the use of an extended photoperiod and green wavelength, which also increased testosterone and 17β-estradiol plasma levels. Plasma levels of cortisol and glucose, which are indicators of a stress response, were significantly decreased through green LED exposure. Our results indicate that environmental light conditions affect the production of pituitary and sex hormones, and reduce the stress response in S. japonicus.

Funder

National Institute of Fisheries Science

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3