The Responses of Sediment Bacterial Communities in Chinese Mitten Crab (Eriocheir sinensis) Culture Ponds to Changes in Physicochemical Properties Caused by Sediment Improvement

Author:

Gao Tianheng12,Li Nannan1,Xue Wenlei1,Hu Yuning3ORCID,Lin Hai3

Affiliation:

1. Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China

2. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China

3. Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China

Abstract

The interaction between nutrients, heavy metals, and sediment bacterial communities play a key role in the health of crabs and the biogeochemical cycles of aquaculture systems. However, the effects of sediment improvement activities in crab culture on nutrients and heavy metals and the response of bacterial communities to the relevant changes are unclear. In this study, 24 water and sediment samples were collected from two aquaculture sites (total of 12 ponds, 6 at each site). High-throughput sequencing was used to determine the structure of the bacterial community and the diversity in water and sediment samples. The relationship between nutrients, heavy metals, and bacterial communities and the changes of the three before and after the improvement of the sediment were analyzed. The results showed that Proteobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, and Firmicutes were predominant at the phylum level of sediment. Sediment improvement has an effect on NH4+-N, sulfide, total organic carbon (TOC), and heavy metals in sediments to varying degrees. In addition, redundancy analysis found that NH4+-N, NO3−-N, TP, and heavy metals were key drivers in crab culture pond sediments. The results of functional prediction showed that carbon, nitrogen, and sulfur metabolism were the dominant processes in the two crab farming areas. Overall, changes in nutrients and heavy metals caused by sediment improvement further affected the structure and function of bacterial communities and may affect biogeochemical cycles. Our study has deepened the understanding of the effects of sediment improvement on nutrients, heavy metals, and bacterial communities in crab culture ponds.

Funder

the Agricultural Project from Jiangsu Province Science and Technology Agency

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3