Study on the Combustion Mechanism of Diesel/Hydrogen Dual Fuel and the Influence of Pilot Injection and Main Injection

Author:

Xu Longlong1,Dong Haochuan1,Liu Shaohua1,Shen Lizhong1,Bi Yuhua1

Affiliation:

1. Yunnan Province Key Laboratory of Internal Combustion Engines, Kunming University of Science and Technology, Kunming 650504, China

Abstract

Hydrogen is a clean and renewable alternative fuel. In this paper, the combustion mechanism of diesel/hydrogen dual fuel is constructed and verified. The mechanism is combined with three-dimensional numerical simulation to study the effects of pilot injection and main injection on the combustion and emissions of a diesel/hydrogen dual fuel engine. The mechanism uses a 70% mole fraction of n-decane and 30% mole fraction of α-methylnaphthalene as diesel substitutes, and it combines n-decane, α-methylnaphthalene, NOX, PAH, soot and H2/C1-C3 sub-mechanisms to form a diesel/hydrogen dual fuel combustion mechanism. The mechanism was verified by chemical kinetics, including the ignition delay time, JSR (Jet Stirred Reactor) oxidation and laminar flame speed, and then, it was verified by computational fluid dynamics. The results show that the simulated values are in good agreement with the experimental values of cylinder pressure, heat release rate and emissions data. The mechanism can well predict the combustion and emissions of a diesel/hydrogen dual fuel engine. Compared with single injection, the peak heat release rate, peak cylinder pressure and MPIR (Maximum Pressure Rise Rate) increase with the increase in pilot mass percent from 5% to 20%, which makes the phase of CA10 and CA50 advance and reduces CO emissions, but NOX emissions increase. With the advance of pilot injection timing from 10° CA BTDC to 30° CA BTDC, the peak cylinder pressure increases, the peak heat release rate decreases, CA10 and CA50 advance, CO emissions decrease, NOX emissions increase and NOX emissions peak at 30° CA BTDC. When the pilot injection timing is further advanced from 30° CA BTDC to 50° CA BTDC, the peak cylinder pressure decreases, the peak heat release rate increases, CA10 and CA50 are delayed, CO and NOX emissions are reduced, and NOX emissions at 50° CA BTDC are lower than those at 10° CA BTDC. With the advance of main injection timing from 0° CA BTDC to 8° CA BTDC, CO emissions decrease, NOX emissions increase, the peak cylinder pressure increases, the peak heat release rate decreases slightly first and then increases, and the peak cylinder pressure and peak heat release rate corresponding to the overall phase shift forward. When the main injection timing is advanced to 6° CA BTDC, MPIR is 1.3 MPa/° CA, exceeding the MPIR limit of diesel engine 1.2 MPa/° CA.

Funder

the National Natural Science Foundation of China

study on the influence of fuel design coupling fuel injection control on combustion characteristics of diesel engine

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3