Orthogonal Experimental Study on the Construction of a Similar Material Proportional Model for Simulated Coal Seam Sampling

Author:

Pang Jie1,Zhang Xinghua1,Zhang Bailin1

Affiliation:

1. School of Safety and Emergency Management Engineering, Mingxiang Campus, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

The development of similar materials is crucial for conducting simulated coal seam sampling experiments. These materials must comprehensively consider the similarity of mechanical properties with raw coal. To ensure a high degree of similarity between the simulated coal seam similar material and raw coal, cement and coal powder were selected as the main influencing factors. This study employed sensitivity analysis and analysis of variance methods to investigate the impact of various factors on the compressive strength, elastic modulus, Poisson’s ratio, and density of comparable materials. The influence of moisture content on the compressive strength and elastic modulus of these materials was also analyzed, as well as the effect of cement and coal powder on moisture content. The results showed that cement was the main controlling factor for the mechanical properties of similar materials. Moreover, the variation of tensile strength and elastic modulus of similar materials in response to the moisture content can be divided into three distinct stages. Based on the influence law, the ratio formula of coal powder and cement for the strength and moisture content of similar materials was obtained, and a proportional model for simulated coal seam sampling similar materials was constructed. The approximate ranges of various parameters that can be achieved by this model are as follows: compressive strength of 1~11.4 MPa, elastic modulus of 0.27~3.62 GPa, Poisson’s ratio of 0.229~0.357, and density of 1.044~1.341 g·cm−3. The error in mechanical parameters for this model has been verified to be within 20%. Finally, similar materials were created for simulated coal seam sampling by employing an appropriate ratio. A self-developed drilling test platform was utilized to successfully conduct an experiment, further demonstrating the reliability of the proportional model.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference26 articles.

1. The Experimental Design and Research of Coaly Similar Materials Based on Uniform Design Method;Wang;Adv. Mater. Res.,2013

2. Experimental Study on the Proportioning of Similar Materials for Simulating Coal and Gas Outburst;Zhang;Coal Sci. Technol.,2015

3. Deformation and gas flow characteristics of coal-like materials under triaxial stress conditions;Wang;Int. J. Rock Mech. Min. Sci.,2017

4. Qin, L. (2018). Research on Pore Structure Evolution Characteristics and Permeability Enhancement Mechanism of Liquid Nitrogen Cycle Fracturing Coal. [Ph.D. Thesis, China University of Mining and Technology].

5. A Study on the Factors Influencing the Characteristics of Novel “Solid Gas” Coupled Similar Materials;Li;J. Min. Saf. Eng.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3