Affiliation:
1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
Abstract
Formaldehyde (HCHO) is a major harmful volatile organic compound (VOC) that is particularly detrimental to human health indoors. Therefore, effectively eliminating formaldehyde is of paramount importance to ensure indoor air quality. In this study, CoAl hydrotalcite (LDH) was prepared using the co-precipitation method and transformed into composite metal oxides (LDO) through calcination. Additionally, a metal Al vacancy was constructed on the surface of the composite metal oxides (EX-LDO and EX-LDO/NF) using an alkaline etching technique. SEM demonstrated the successful loading of CoAl-LDO onto nickel foam surfaces (LDO/NF), and an extended etching time resulted in a greater number of porous structures in the samples. XRD confirmed the successful synthesis of the precursor materials, CoAl hydrotalcite (CoAl-LDH) and CoAl layered double oxides (CoAl-LDO). EDS analysis confirmed a reduction in aluminum content after alkaline etching. XPS analysis verified the presence of abundant Co2+ and surface oxygen as crucial factors contributing to the catalyst’s excellent catalytic activity. The experimental results indicated that catalysts containing metal cation vacancies exhibited superior catalytic performance in formaldehyde oxidation compared to conventional hydrotalcite-derived composite oxides. H2-TPR confirmed a significant enhancement in the participation of lattice oxygen in the catalytic oxidation reaction; it was found that the proportion of surface lattice oxygen consumption by the E5-LDO catalyst (30.2%) is higher than that of the LDO catalyst (23.4%), and the proportion of surface lattice oxygen consumption by the E1-LDO/NF catalyst (27.5%) is higher than that of the LDO/NF catalyst (14.6%), suggesting that cation vacancies can activate the surface lattice oxygen of the material, thereby facilitating improved catalytic activity. This study not only reveals the critical role of surface lattice oxygen in catalytic oxidation activity, but also aids in the further development of novel catalysts for efficient room-temperature oxidation of HCHO. Moreover, it provides possibilities for developing high-performance catalysts through surface modification.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Special Fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献