Water Vapor Adsorption on Desiccant Materials for Rotary Desiccant Air Conditioning Systems

Author:

Zhu Ziwen1,Zhang Muyuan1

Affiliation:

1. Institute of Marine Engineering, Jimei University, Xiamen 361021, China

Abstract

In order to determine the water vapor adsorption performance of a rotary desiccant-based air conditioning system, the behavior of water adsorption on cylindrical pores of different sizes was studied by using classical density functional theory (CDFT) based on perturbated chain statistical associating fluid theory (PC-SAFT). Firstly, the structural parameters of the desiccant material were characterized by scanning electron microscopy (SEM), X-ray Energy Dispersive Spectrum (EDS), and N2 adsorption/desorption isotherms, as well as adsorption equilibrium measurements of water vapor at temperature range 293–308 K. Secondly, the potential energy equation of water molecules in cylindrical pores was determined, and contribution of various terms of PC-SAFT for simulating fluid in cylindrical pores were established. Finally, the pore size distribution (PSD) of the desiccant materials is determined by the PC-SAFT kernel. Moreover, water vapor condensation was investigated with the PC-SAFT model in micropores. The results indicate that the rotary desiccant materials have a large number of micropores with a volume of 0.3669 cm3/g and the amount of water adsorption is about 0.285 g/g. The condensation pressure and the pore width corresponding to the saturated pressure P0 grow with an increase in the temperature, signifying that adjusting the PSD of the material has a significant effect on improving the dehumidification performance. The research concludes that the PSD range of the oxide cylindrical pore between 1.09 and 1.53 nm is particularly beneficial for dehumidification. This study provides valuable theoretical guidance for optimizing dehumidification materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3