Flow in a Taylor–Couette Reactor with Ribbed Rotors

Author:

Tang Jianxin1,Wang Chenfeng1ORCID,Liu Fei1,Yang Xiaoxia1,Wang Rijie1

Affiliation:

1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China

Abstract

This paper investigates the flow structure and flow pattern transition within a conical ribbed Taylor–Couette reactor (TCR), which is 4 mm in gap width and 200 mm in height, via particle image velocimetry (PIV) and numerical simulation methods. The effect of various parameters on the vortex structure and on flow transition, including the structural parameters of the ribs (rib spacing and rib width) and the operating parameters (Taylor number and axial Reynolds number), were investigated. Without axial flow, the ribbed TCR can control the flow structure while maintaining the symmetry of the flow field. Under certain conditions, a Taylor vortex pair can form between the ribs, with the down vortex rotating clockwise and the up vortex rotating counterclockwise. The axial dimension of the Taylor vortex can be controlled by adjusting the rib spacing, which can be summarized into four different conditions according to the size of the rib spacing. With axial flow, the axial Reynolds number greatly impacts the Taylor vortex structure within the ribbed TCR, and as the axial Reynolds number increases, the up vortex appears to be compressed and the down vortex appears to be stretched. The double vortex flow pattern between the ribs is eventually transformed into a single vortex. The critical axial Reynolds number for flow pattern transition is defined and correlated with the Taylor number and rib spacing. The results show that the critical axial Reynolds number is positively proportional to the Taylor number and is inversely proportional to rib spacing. The empirical correlation equation developed in this study shows strong predictive power and is validated using the experimental results. Overall, this study provides a comprehensive understanding of the flow structure and pattern transition within a ribbed TCR and lays the foundation for the further optimization of TCR design.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3