Study on Mass Erosion and Surface Temperature during High-Speed Penetration of Concrete by Projectile Considering Heat Conduction and Thermal Softening

Author:

Dong Kai1ORCID,Jiang Kun1,Jiang Chunlei1,Wang Hao1,Tao Ling1

Affiliation:

1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

The mass erosion of the kinetic energy of projectiles penetrating concrete targets at high speed is an important reason for the reduction in penetration efficiency. The heat generation and heat conduction in the projectile are important parts of the theoretical calculation of mass loss. In this paper, theoretical models are established to calculate the mass erosion and heat conduction of projectile noses, including models of cutting, melting, the heat conduction of flash temperature, and the conversion of plastic work into heat. The friction cutting model is modified considering the heat softening of metal, and a model of non-adiabatic processes for the nose was established based on the heat conduction theory to calculate the surface temperature. The coupling numerical calculation of the erosion and heat conduction of the projectile nose shows that melting erosion is the main factor of mass loss at high-speed penetration, and the mass erosion ratio of melting and cutting is related to the initial velocity. Critical velocity without melting erosion and a constant ratio of melting and cutting erosion exists, and the critical velocities are closely related to the melting temperature. In the process of penetration, the thickness of the heat affected zone (HAZ) gradually increases, and the entire heat conduction zone (EHZ) is about 5~6 times the thickness of the HAZ.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3