Determination of the Effect of Wastewater on the Biological Activity of Mixtures of Fluoxetine and Its Metabolite Norfluoxetine with Nalidixic and Caffeic Acids with Use of E. coli Microbial Bioindicator Strains

Author:

Matejczyk Marzena1,Ofman Piotr2ORCID,Wiater Józefa3,Świsłocka Renata1ORCID,Kondzior Paweł1ORCID,Lewandowski Włodzimierz1

Affiliation:

1. Faculty of Civil Engineering and Environmental Sciences, Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland

2. Department of Technology in Environmental Engineering, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland

3. Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45E Street, 15-351 Bialystok, Poland

Abstract

In the present work, the conducted research concerned the determination of the toxicity and oxidative stress generation of the antidepressant fluoxetine (FLU), its metabolite nor-fluoxetine (Nor-FLU), the antibiotic nalidixic acid (NA), caffeic acid (CA) and their mixtures in three different environments: microbial medium (MM), raw wastewaters (RW) and treated wastewaters (TW). We evaluated the following parameters: E. coli cell viability, toxicity and protein damage, sodA promoter induction and ROS generation. It was found that FLU, Nor-FLU, NA, CA and their mixtures are toxic and they have the potency to generate oxidative stress in E. coli strains. We also detected that the wastewater, in comparison to the microbial medium, had an influence on the toxic activity and oxidative stress synthesis of the tested chemicals and their mixtures. Regardless of the environment under study, the strongest toxic activity and oxidative stress generation were detected after bacterial incubation with NA at a concentration of 1 mg/dm3 and the mixture of FLU (1 mg/dm3) with Nor-FLU (0.1 mg/dm3) and with NA (0.1 mg/dm3). The ROS synthesis and sodA promoter induction suggest that, in the case of the examined compounds and their mixtures, oxidative stress is the mechanism of toxicity. The analysis of the types of interactions among the substances constituting the mixtures in the wastewater revealed synergism, potentiation and antagonism.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3