SPH Simulation of Sediment Movement from Dam Breaks

Author:

Zheng Xiaogang12ORCID,Rubinato Matteo3ORCID,Liu Xingnian2,Ding Yufei24,Chen Ridong2,Kazemi Ehsan5ORCID

Affiliation:

1. International Economic & Technical Cooperation and Exchange Center, Ministry of Water Resources, Beijing 100038, China

2. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

3. Centre for Agroecology, Water and Resilience, School of Energy, Construction and Environment, Coventry University, Coventry CV1 5FB, UK

4. Academic Affairs Office, Sichuan University, Chengdu 610065, China

5. Intertek Energy & Water Consultancy Services, Liphook, Hampshire GU30 7DW, UK

Abstract

This study aims to develop a robust sediment transport model focusing on the vertical two-dimensional water–sediment two-phase flow in which sediments are constantly interacting, hitting each other, gradually becoming smoother and smaller, and accumulating when velocities decrease. The grid-based models currently available can be cumbersome when dealing with phenomena that require replication of this water–sediment interface. Therefore, a two-dimensional water–sediment two-phase flow model based on Smoothed Particle Hydrodynamics (SPH) is established in the macroscopic scale to simulate a large amount of sediment accumulation and propagation typical of a landslide caused by a dam break. In this study, water and sediments are treated as two kinds of fluids with different densities and viscosities to accurately simulate the flow structure, the sediment transport, and the water–sediment interaction process. The interaction model developed treats the interface of the two phases within a unified framework. The model developed was then tested against three applications, and the results obtained confirmed its accuracy in correctly replicating the movement of the sediment phase. The preliminary results obtained can be helpful in providing further insights into the mixing of water and sediments and their propagation following a dam break and the consequent wave profile generated.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3