Optimizing Crop Yield and Reducing Energy Consumption in Greenhouse Control Using PSO-MPC Algorithm

Author:

Gong Liyun1,Yu Miao1,Kollias Stefanos1ORCID

Affiliation:

1. School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK

Abstract

In this study, we present a novel smart greenhouse control algorithm that optimizes crop yield while minimizing energy consumption costs. To achieve this, we relied on both a greenhouse climate model and a greenhouse crop yield model. Our approach involves applying the model predictive control (MPC) method, which utilizes the particle swarm optimization (PSO) algorithm to identify optimal controllable parameters such as heating, lighting, ventilation levels. The objective of the optimization is to maximize crop yield while minimizing energy consumption costs. We demonstrate the superiority of our proposed control algorithm in terms of performance and energy efficiency compared to the traditional control algorithm. The effectiveness of the PSO-based optimization strategy for finding optimal controllable parameters for MPC control is also demonstrated, outperforming the traditional genetic algorithm optimization. This study provides a promising approach to smart greenhouse control with the potential for increasing crop yield while minimizing energy costs.

Funder

European Regional Development Fund of the European Union

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference25 articles.

1. Ponce, P., Molina, A., Cepeda, P., Lugo, E., and MacCleery, B. (2014). Greenhouse Design and Control, CRC Press.

2. Straten, G., Willigenburg, G., Henten, E., and Ooteghem, R. (2010). Optimal Control of Greenhouse Cultivation, CRC Press.

3. Model Parameter Self-Tuning PID Control for Greenhouse Climate Control Problem;Su;IEEE Access,2020

4. The Control of Greenhouses Based on Fuzzy Logic Using Wireless Sensor Networks;Alpay;Int. J. Comput. Intell. Syst.,2019

5. Using the extended Kalman filter to improve the efficiency of greenhouse climate control;Hameed;Int. J. Innov. Comput. Inf. Control. IJICIC,2010

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3