Application of Epidemiological Methods in a Large-Scale Cross-Sectional Study in 765 German Dairy Herds—Lessons Learned

Author:

Merle Roswitha1ORCID,Hoedemaker Martina2ORCID,Knubben-Schweizer Gabriela3ORCID,Metzner Moritz3ORCID,Müller Kerstin-Elisabeth4,Campe Amely5ORCID

Affiliation:

1. Institute of Veterinary Epidemiology and Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany

2. Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30559 Hannover, Germany

3. Clinic for Ruminants, Ludwig-Maximilians-Universität Munich, Sonnenstr. 16, 85764 Oberschleißheim, Germany

4. Ruminant and Swine Clinic, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 65, 14163 Berlin, Germany

5. Department of Biometry, Epidemiology and Information Processing (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Buenteweg 2, 30559 Hannover, Germany

Abstract

From 2016 to 2020, the “PraeRi” study, conducted by three German veterinary universities, was aimed at enhancing animal health and welfare in dairy farms. With 765 dairy farms visited and 101,307 animals examined, this study provided a basis for improving animal health and welfare. The study population comprised three different regions representing a broad variety of characteristics. To ensure representative estimates, a sample size of 250 farms was determined for each region, employing a stratified sampling plan based on farm size. According to the information provided by the farmers, the most commonly occurring disease in their herds was mastitis without general disorder (14.2% to 16.3% of the herd—depending on the region). For most disorders, prevalence data were lowest for the region South compared with the two remaining regions. Multivariable regression analyses were performed to identify risk factors for various target variables, and the results were communicated through individual reports and benchmarking flyers to participating farmers. The authors encountered challenges in management and communication due to the project’s size in terms of personnel, data, and farms examined. Harmonizing data management and hypothesis testing across all involved parties added complexity.

Funder

German Federal Ministry of Nutrition and Agriculture

Publisher

MDPI AG

Reference33 articles.

1. Guidelines and recommendations for ensuring Good Epidemiological Practice (GEP): A guideline developed by the German Society for Epidemiology;Hoffmann;Eur. J. Epidemiol.,2019

2. Methods and processes of developing the strengthening the reporting of observational studies in epidemiology − veterinary (STROBE-Vet) statement;Sargeant;Prev. Vet. Med.,2016

3. Regionalisierung Deutschlands anhand landwirtschaftlicher Strukturdaten: Regionalisation of Germany by data of agricultural structures;Merle;Berl. Munch. Tierärztl. Wochenschr.,2012

4. Glaser, S., and Kreienbrock, L. (2011). Stichprobenplanung bei veterinärmedizinischen Studien: Ein Leitfaden zur Bestimmung des Untersuchungsumfangs, Schlütersche. [1st ed.].

5. Bayrisches Staatsministerium für Ernährung, Land- und Forstwirtschaft (2023, August 21). Herkunftssicherungs- und Informationssystem für Tiere. Available online: https://www.hi-tier.de/default.htm.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3