Basecalling Using Joint Raw and Event Nanopore Data Sequence-to-Sequence Processing

Author:

Napieralski AdamORCID,Nowak RobertORCID

Abstract

Third-generation DNA sequencers provided by Oxford Nanopore Technologies (ONT) produce a series of samples of an electrical current in the nanopore. Such a time series is used to detect the sequence of nucleotides. The task of translation of current values into nucleotide symbols is called basecalling. Various solutions for basecalling have already been proposed. The earlier ones were based on Hidden Markov Models, but the best ones use neural networks or other machine learning models. Unfortunately, achieved accuracy scores are still lower than competitive sequencing techniques, like Illumina’s. Basecallers differ in the input data type—currently, most of them work on a raw data straight from the sequencer (time series of current). Still, the approach of using event data is also explored. Event data is obtained by preprocessing of raw data and dividing it into segments described by several features computed from raw data values within each segment. We propose a novel basecaller that uses joint processing of raw and event data. We define basecalling as a sequence-to-sequence translation, and we use a machine learning model based on an encoder–decoder architecture of recurrent neural networks. Our model incorporates twin encoders and an attention mechanism. We tested our solution on simulated and real datasets. We compare the full model accuracy results with its components: processing only raw or event data. We compare our solution with the existing ONT basecaller—Guppy. Results of numerical experiments show that joint raw and event data processing provides better basecalling accuracy than processing each data type separately. We implement an application called Ravvent, freely available under MIT licence.

Funder

Warsaw University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3