Multimodal Microstructure and Mechanical Properties of AZ91 Mg Alloy Prepared by Equal Channel Angular Pressing plus Aging

Author:

Yang Zhenquan,Ma Aibin,Liu Huan,Sun JiapengORCID,Song Dan,Wang Ce,Yuan Yuchun,Jiang Jinghua

Abstract

Developing cost-effective magnesium alloys with high strength and good ductility is a long-standing challenge for lightweight metals. Here we present a multimodal grain structured AZ91 Mg alloy with both high strength and good ductility, prepared through a combined processing route of low-pass ECAP with short-time aging. This multimodal grain structure consisted of coarse grains and fine grains modified by heterogeneous precipitates, which resulted from incomplete dynamic recrystallization. This novel microstructure manifested in both superior high strength (tensile strength of 360 MPa) and good ductility (elongation of 21.2%). The high strength was mainly attributed to the synergistic effect of grain refinement, back-stress strengthening, and precipitation strengthening. The favorable ductility, meanwhile, was ascribed to the grain refinement and multimodal grain structure. We believe that our microstructure control strategy could be applicable to magnesium alloys which exhibit obvious precipitation strengthening potential.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3