Author:
Dong Wanqing,Zhou Zheng,Zhang Lijun,Zhang Mengdi,Liaw Peter,Li Gong,Liu Riping
Abstract
Thermoelectric (TE) materials can interconvert waste heat into electricity, which will become alternative energy sources in the future. The high-entropy alloys (HEAs) as a new class of materials are well-known for some excellent properties, such as high friction toughness, excellent fatigue resistance, and corrosion resistance. Here, we present a series of HEAs to be potential candidates for the thermoelectric materials. The thermoelectric properties of YxCoCrFeNi, GdxCoCrFeNiCu, and annealed Al0.3CoCrFeNi were investigated. The effects of grain size and formation of the second phase on thermoelectric properties were revealed. In HEAs, we can reduce the thermal conductivity by controlling the phonon scattering due to the considerable complexity of the alloys. The Y, Gd-doped HEAs are competitive candidate thermoelectric materials for energy conversion in the future.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献