Abstract
Although short-pitch resistance spot welding (RSW) significantly increases vehicle body strength, its application has been limited because of the associated shunting effect. In this study, a reference-based adaptive RSW process intended to minimize the shunting effect was proposed, and a related RSW system that controls welding current and power was developed to implement the adaptive method. The proposed RSW method compensates for the heat input loss caused by the shunting effect based on the estimated weld pitch and reference data obtained under suitable welding conditions. An exponential model was developed using a unique indicator (i.e., the ratio of the adaptive welding heat input to the reference welding heat input until the reference welding power curve peak) to estimate the weld pitch. A logistic growth model was next developed based on the relationship of the nugget diameter, heat input, and weld pitch to estimate the heat input compensation. A unique strategy using power control with a modified reference power curve was applied to supply the calculated heat input compensation. The experimental results intended to validate the proposed adaptive RSW process indicated that the proposed process effectively reduced the shunting effect and produced an improved nugget shape relative to the conventional RSW process.
Subject
General Materials Science,Metals and Alloys
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献