Abstract
In indoor positioning, signal fluctuation is one of the main factors affecting positioning accuracy. To solve this problem, a new method based on an integration of the empirical mode decomposition threshold smoothing method (EMDT) and improved weighted K nearest neighbor (WKNN), named EMDT-WKNN, is proposed in this paper. First, the nonlinear and non-stationary received signal strength indication (RSSI) sequences are constructed. Secondly, intrinsic mode functions (IMF) selection criteria based on energy analysis method and fluctuation coefficients is proposed. Thirdly, the EMDT method is employed to smooth the RSSI fluctuation. Finally, to further avoid the influence of RSSI fluctuation on the positioning accuracy, the deviated matching points are removed, and more precise combined weights are constructed by combining the geometric distance of the matching points and the Euclidean distance of fingerprints in the positioning method-WKNN. The experimental results show that, on an underground parking dataset, the positioning accuracy based on EMDT-WKNN can reach 1.73 m in the 75th percentile positioning error, which is 27.6% better than 2.39 m of the original RSSI positioning method.
Funder
the Fundamental Research Funds for the Central Universities under Grant
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献