An ICN-Based IPFS High-Availability Architecture

Author:

Zeng Ruibin,You Jiali,Li Yang,Han Rui

Abstract

The Interplanetary File System (IPFS), a new type of P2P file system, enables people to obtain data from other peer nodes in a distributed system without the need to establish a connection with a distant server. However, IPFS suffers from low resolution efficiency and duplicate data delivery, resulting in poor system availability. The new Information-Centric Networking (ICN), on the other hand, applies the features of name resolution service and caching to achieve fast location and delivery of content. Therefore, there is a potential to optimize the availability of IPFS systems from the network layer. In this paper, we propose an ICN-based IPFS high-availability architecture, called IBIHA, which introduces enhanced nodes and information tables to manage data delivery based on the original IPFS network, and uses the algorithm of selecting high-impact nodes from the entitled network (PwRank) as the basis for deploying enhanced nodes in the network, thus achieving the effect of optimizing IPFS availability. The experimental results show that this architecture outperforms the IPFS network in terms of improving node resolution efficiency, reducing network redundant packets, and improving the rational utilization of network link resources.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference45 articles.

1. An Overview into the InterPlanetary File System (IPFS): Use Cases, Advantages, and Drawbacks;Bieri,2021

2. Content delivery and caching from a network provider’s perspective

3. Content Delivery Network Security: A Survey

4. A Peer-to-Peer Electronic Cash System. Bitcoin https://bitcoin.org/bitcoin.Pdf

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ICN-Based Enhanced Content Delivery for CDN;Future Internet;2023-11-30

2. Enhancing Network Availability: An Optimization Approach;Computation;2023-10-09

3. Networking for Democratization of Data Ownership;2023 21st Mediterranean Communication and Computer Networking Conference (MedComNet);2023-06-13

4. Echo State Network-Based Content Prediction for Mobile Edge Caching Networks;International Journal of Information Technology and Web Engineering;2023-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3